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INTRODUCTION

Chu'nce.a are, since you have purchased the Axaroy Slide Ruls, you
are interested in slide rules and know something about them.

You know, for instance, that all numericsl slide rules are based on
logarithms. You can add them to multiply, and subtract them to
divide. The various scales—folded, inverted, to the base e, eto., are
based on the same principles. The more types of scales, the more
calculations you can make.

The basic problems that a numerical slide rule solves are multiplica-
tion, division, taking roots, and raising to powers. Until the ANALON
Slide Rule was invented, there was no similar tool for dealing with
physical quantities having both size and dimension. This new slide
rule extends the basic principles of the slide rule to dimensions and
can be a very useful device. With your Anavron Slide Rule you will
be able to perform dimensional operations, just as with your numerical
rule you perform numerical operations. Your AxavLox Slide Rule also
has several of the most useful numerical seales so you may perform
many numerical operations directly on your dimensionsl rule. Your
Anavron Slide Rule can be used in the following ways:

(1) For checking equations dimensionally

resistance X charge

. = current?
inductance = :

Is it true that

(2) As an aid in recalling formulas

For & conducting sphere of radius r, is the capacitance C
given by

@r r
(& = orby C 4“0?

1

(3) As an aid in deriving formulas

If the formula for the pericd of & simple pendulum of length ¢
in & gravitational field of acceleration g has the form

T = Al'g’,

what are the values of r and s ?

(4) For performing numerical calculations

Multiplication, division, squares, square rcots, and other nu-
merical calculations may be performed. For example,

6.88 X 176 .
2xV/215 X 0440

The first three of the four uses fall into the category of dimensional
analysis. You can obtain the answers to the above problems in a
few seconds on the Anarox Slide Rule.

The Axavron Slide Rule is an aid to students, engineers, scientists,
and teachers in understanding and employing dimensions and units
in a simple yet rigorous manner.

Remember—a slide rule, like a list of formulas or & table of values,
is not intended to substitute for thinking. It helps you by acting as
your “bookkeeper’ in performing tasks which would take much longer
by hand. The Anaron Slide Rule will not e¢liminate the creative
thinking process that leads you to a specific formula or derivation,
but it will make the checking-out process faster and simpler.

Attain accuracy first. Let the speed come later. And keep in mind
that numerical slide rules are accurate to about one percent on the
more tightly compressed scales. A hairline's difference can mean &
few thousandths error in some numerical calculations. The precise
setting of scales is especially important in using the AxavLox Slide Rule.



CHAPTER 1
THE ANALON SLIDE RULE

1. What is the ANALON?

Your AnaLoN Slide Rule is equipped with scales on which physical

dimensions such as length, time, mass, cha o
(foree)™, ete. are located. » charge, Jorce, Vjorce, (Jorce)',

These dimensions can be multiplied, divided and operated upon in
much the same way as ordinary numbers. For example, dividing
le.ngUl by time gives the result velocity in much the same 'way that
dividing 24 by 6 gives the result 4. Similarly, multiplying resistance
b'y (current)? gives the result power in much the same way that mul-
tiplying 12 by (3)? gives the result 108.

We must distinguish between dimensions and units.

The term dimensions refers to physical concepts such as length,
mass, lime, ete. Associated with every dimension are certain units
pf measure or simply units. For example, length may be measured
in units of feet, centimeters, microns, ete.

A dimension i8 not affected by the size of the unit of measure
fzmploycd; length remains length regardless of whether it is measured
in units of feet, angstroms, or cubits.

Your Anaron Slide Rule multiplies and divides dimensions, not
units. It is thus a qualitative glide rule rather than & quantilative elide
rule. A length, if doubled, is still & length, and & mass, if halved,
is still & mass. Therefore, in dimensional calculations all numerical
faclors are ignored. For example, in the formula

E = yms,
the dimenstonal relationship is
Energy = mass X (velocity)?,
and the factor § is ignored.

Operations with dimensions, such as multiplication, division, etc.,
are performed in the same manner as numerical calculations, with the
dimensions taking the place of numbers.

2. Physlcal description

Your AnaLon Slide Rule consists of three parts; the body, the slide,
and the indicator. Readings are made with the use of the vertical
hairline on the window of the indicator (see Fig. 1).

Lu'\’luux 7’{" W\U-'-'E RIGHT INOEX
/ AR \\ \
y A \
e |
u.(nt mosc(ton
Fia. 1

The mark associated with the number 1 on & numerical scale 18
called the index of the scale. Each numerical scale (A, B, C, and D)
has two indices, one at the left end and one at the right end.

The front face of the Axarox Slide Rule consists of seven dimen-
sional scales (three on the slide and two on each rail) and the A, B,
C, and D numerical scales.

The U and V scales contain dimensions which are 80 common 8s
to have standard names and symbols. These are tabulated on the
reverse face of the Anavrox Slide Rule.

The other dimensional scales contain powers of the dimensions
shown on the U and V scales. The various powers (=1, %, 2) have
been placed on separate scales Lo make them easier to locate and to
avoid congestion. The exponents (=1, %, 2) have been omitted to
simplify the appearance. Itis helpful to remember that in principle
all dimensions (including powers) could have been crowded onto the
U and V scales.

On the reverse face of the ANALON Slide Rule is & reference table
for the 30 symbols used on the seven dimensional scales. This table
also reduces each of these 30 dimensions to & combination of four
basic dimensions; Length, Mass, Time, and Electric Charge.

4



3. Reading the scales

The numerical scalea are read ss on & numerical slide rule. If you
are not familiar with the theory and operation of the numerical slide
rule, refer to the K&E Deci-Lon® Manus! No. 68 2069 or any of
the other excellent texts available,

The dimensional scales might appear confusing at first, but they
are extremely easy to read. Instead of the location of sll possible
numbera (up to four digits), thess scales are concerned only with the
location of & relatively small number of specific quantities.

The U and V scales

The physical quantities are shown directly on the U and V scales
(see Fig. 2a). For example, the symbol  on the V scale represents
the physical quantity FORCE. The vertical black line below the
symbol F is its exact location. Unless you read that line, you are
not reading FORCE.

v ! 2
(FORCE)

Fia. 2a

The U™! and V! scales

The U—! and V- scales are the inverse scales (see Fig. 2b). Follow-
ing slide rule convention, the inverse scales are in red. The quantities
loeated on these scales are the reciprocals of the symbols shown. For
example, when F is located on either of these scales, it is equivalent

to ' or 1/F.

(FORCE)"
1

The UY? and V'/? gcales

The U and the V' scales are square root scales (see Fig. 2¢),
Quantities located on these scales are equivalent to the square roots
of the symbols shown. For example, the symbol F on these scales
represents (FORCE)* or VFORCIE.

v (FORCE)'?
1 I
Im F W

Fio. 2¢

The V? scale

The V? scale is a square scale (sce Fig. 2d). Quantities located on
this scale correspond to the square of the symbols on it. For example,
the symbol F on the V? scale represents (FORCE)?.

=

g f.
(FORCE)?

Fio, 2d

4. Multiplication and division

The scales of & numertcal slide rule are sequences of numbers arranged
according to a logarithmic law, whereas the dimensional scales on the
AnaroN Slide Rule are arrays of symbols representing the physical
quantities. The symbols are located according to the physical laws
and definitions.

The dimensions of an equation obey the laws of algebra, thus the
placement of the symbols on the rule is also by the logarithmic scheme.
Each symbol has been assigned a numerical value. For example, the
symbol v (Velocity) on the U secale is represented by the number 299
(we ignore the power of ten just as on numerical scales).

The physical quantities, e.g. Force, Denstty, vV Mass, (Velocity)?, elc.,
are lreated as numbers and are mulliplied and divided in the same way
as ordinary numbers.



The U and V scales contain the physical quantities direstly, and
correspond numerically to the C and D scales. The inverse scales,
U=* and V-, contain the reciprocal values of the quantities listed on
them, and the U'? and V' and the V? scales contain the square roots
and squares respectively of the quantities on them. These auxiliary
scales (other than the U and V) are designed to aid and speed your
use of the AnNarox Rule.

The Anavon Slide Rule scales are set up in the MKS system of
units. Conversion to other systems of units is possible. For conver-
sion between systems, see Appendix B, page 27.

For practice, follow the simple examples given below:

Example 1. Dimensionally investigate the expression
Q’
Irel®

Method 1.

Set the left index of the C scale® opposite Q on the V scale,
push hairline to Q on the U scale.t

Note that no quantity appears on the V scale under the hairlins, but
the number on the D scale, 257, must represent the quantity @ (see
Fig. 3a).

N c

O
ed

ot = s e el s
-

Fia. 3a

Draw ¢ on the U scale under the hairline.

Opposite the right index of C, it appears that %/ on the V scale has
the dimension of a, but close inspection shows that it does not. Be
careful! Remember what we said about accuracy.

® You will find it cseful 1o tsa the halrline o belp set the indices :
tWomldjusxu-nlluunbynlup‘thhauﬁquoa!hVoeak.Mdnvh‘On-m

U~ scale under the balricae.
7
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Fro. 3b

Push hairline to ¢ on the U~! seale (see Fig. 3b),

(the V scale now shows Q*/)

draw ¢ on the U secale under the hairline,

opposite the index read F (Foree) on the V seale under the hairline
(see Fig. 3c).

The factor 4x i8 purely numeric, and does not enter into the dimen-
sional calculations.

c
e - P - —t -

e pe fe

Fra. 3¢

Method 2.

The amount of work in Method 1 may be considerably shortened
through the use of the auxiliary scales.

Push hairline to Q on the V? scale,

draw ¢ on the U scale under the hairline,

push hairline to & on the U—! scale,

at the hairline read F on the V scale (ses Fig. 4).
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The result shows that
Ql
dxe?
i:} dimcusi.onally equivalent to F (Force). This is as it should be
since physically it represents the force of repulsion between two iden-
tical charges Q separated by a distance (.

Consider the calculation of
Vv (Inductance) X (Capacitance) = ?
Symbolically, this is

Example 2.

LM S V% mm 9
gince the square root quantities appear directly on the Axaron Rule,
Set the right index of the C scale opposite L on the V4 soale,
push hairline to C on the UY? scale,
the result 7' (or «*)* is read under the hairline on the V scale
(see Fig. 5).

\W
Y=o

<
o) ‘ i
v .

B

Fra. §

R-n:::ba sinoe mutserical factors are lgoored oo the ANarow, « (rsdisza/sec) a=d

/ (cyeles/pec) are dimesnaicaslly squivalsat,
Q

5. QuanHtties not shown

When a specific quantity (or a combination of quantities) is of interest
to you, and it dees not appear on the rule, it may be easily added.
Using the edge of the indicator as a guide, seratch the mark with the
point of & compass (or other sharp instrument), and fill the indenta-
tion with ink. Record the new symbol in your manual, or on the
reverse face of the Anavrox Slide Rule in the same manner. If, for
example, the dimension pressure (force divided by area) appears often
in your work, it may be easily added. Since F/A falls at 1967 on
the C & D scales, the edge of the indicator may be set to this value
and used as a guide for seribing the mark.

10



CHAPTER II
DIMENSIONS, UNITS, AND DIMENSIONAL ANALYSIS

6. Dimensions and units

You do not need to understand the theory of logarithms to operate &
num.erical slide rule, but you must completely understand the mathe-
matics to which you are applying the slide rule. Similarly, in order
to use the Anaron Slide Rule, you must understand the fund'umemtals
of dimensgions and units. .

A dimension is & tag or & label. It is the name we give to a physi-

cal quantity. Familiar examples are: foree (F), velocity (v) and
length (7).

: A unit is the amount of a physical quantity that is assigned the
size or value 1, or unity. For the dimension “length’”, the unit of
measurement might be the foot or the yard or the meter, eto. The
size of units are dictated by convenience. A carpenter uses feet and
inches, whereas an atomic physicist might employ the angstrom ss
the unit of length.

The relationships among the physical quantities—the physical
laws—are expressed &8s equations. Such an equation, for example,
F 4o Gm,m,

expresses the gravitational force of attraction F between masses my
and m; separated by distance {. The symbol G is & proportionslity
constant. The equation must be dimensionally consistent; that is,
the combination of quantities on the right hand side must be equiva-
lent to force. The constant G must be of such size and dimension
that the equation balances numerically and dimensionslly. The quan-
tity G depends upon the units chosen. Asan example, if F is in dynes,
m in grams, and ¢ is in centimeters, then
ro

G = '-ml—m; = 6.67 X 10~* dyne cm?/gm?.

11

If a different system of units is chosen, G will have a different numeri-
cal value and different units, consistent with the new system. It
should be clear that the dimensions of G will not in general change.
(Force) (Length)?

(Mass)? i

A similar example is Coulomb's law,

It remains

~l k‘?lfli
! —a

This expresses the force of repulsion F between charges ¢, and ¢
separated by distance ¢. By selecting k, various systerms of units may
be defined. If F is in newtons, ¢ in coulombs, and £ in meters, then
k is given by
k = -.I_i-: = 0 % 10* newton (meter)?/(coulomb)?.

If we select & = 1 and dimensionless, the units are those defined as
electrostatic system of units (esu system), and we have absorbed the
dimensions of the constant into the physical quantities of the esu
gystem. For example, ¢ in the esu system contains a power of the
veloeity of light in its dimension.

We have no control over the dimensions of quantitics excepl as new
quantities of interest are defined, but we have relative freedom over
the choice of the system of units to be employed in a given situation.

There are several standard systems of units in use today. In all
of the systems, the dimensions of all physical quantities can be
expressed in terms of a few basic dimensions. For example, if length
(L), mass (M), time (T') and electric charge (Q) are sclected as basic,
all other quantities® may be expressed in terms of them. Velocity
will be L T, foree would be M L 777, ete. Which dimensions are
chosen as basic is determined by the relative ability to measure the
quantities of interest. A system often used in science and engineer-
ing is the MKSC system (Meter, Kilogram, Second, Coulomb). This
i & system whose basic dimensions are length, mass, time, and charge.
If current is easier to measure than electric charge, then the basic
dimensions would be L, M, T, and I, where Q would be I T dimen-
sionally. In 1060 the General Conference on Weight and Measure

® [f we want to include thermodynamis prebloma, we will need an sdditional basis dimen-

son—Temparature.

12



adopted the MKSA system (Meter, Kilogram, Second, Ampere)
as standard. This system is called the SI system—the Systéme
Internationale.

7. Dimensional analysis

Physical equations are dimensionally homogeneous. This means that
cach term of an equation must be expressed in the same combination
of basic dimensions. Clearly, s dimensional check of an equation
will not show purely numerical factors, algebraic signs, ete., but it
will disclose many possible errors. Consider the following example
in which we wish to check the expression dimensionally :

zM o

m NL'

where v is the velocity of a bullet of mass m fired into s ballistic
pendulum of mass M and length L, x being the forward travel of the
pendulum and g the acceleration of gravity.

v=

Replacing each quantity in terms of the basic dimensions M, L

and 7T, [!:] _ [L10M] [[ET] [L]

T [M] Z1 " LT
we see that the expression checks dimensionally.

If a physical situation may be formulated in terms of n quantities
(Mass, Force, ete.), and the n quantities may be expressed in terms
of m basic dimensions, then there are (n — m) different dimensionless
constants that may be formed. This concept is useful in deriving
possible formulas.

If a problem involves only > (distance), v (velocity), snd ¢ (time),
then n = 3 and m = 2 (L and 7). There is only one dimension-
less quantity which can be formed: 5 or -bz—t The Axaron Slide

Rule quickly shows that = and vt are dimensionally equivalent.

Consider the problem of deriving (or recalling) the formula for the
period of oscillation of a simple pendulum. The period (is assumed
to be a function of the length ¢, the mass m and the scceleration of
gravity g. We can express this combination in the form

k = dimensionless constant = 1*{’g‘m*

13

where the exponents are to be found., Sinee we are looking for (¢ in
terms of the other quantities, we select the value of a as 1 (unity)
and solve for ¢,

L= k&g ‘m™1,
or in terms of basic dimensions,
[P7] =k [CLY* LT [(M]N
Equating the exponents of the basic dimensions on both sides of the
equation, we get
L 3 0= —=b—¢c

M: 0= —d
T : l:= Pc

Hence, d = 0, ¢ = %, b = —1}; and the final equation is

V= k\/ o
g
This is known to be the correct form. An experiment would show
that & = 2x. Note that if we had not selected the value of a, we

would have had four unknowns and only three equations. We will
do this problem with the Axarox Slide Rule in Chapter I11.

Here is another simple example. We wish to determine & possible
form for the kinetic energy W of a moving body of mass m and
velocity v. Proceeding as before, we get

k = Wem®¢,
and selecting a as 1, we obtain a solution,
W = km~*v=".
In terms of basic dimensions obtained from the back of the ANALON,
[MT2LY]) =FkE[M])?® L] LTI

Equating the exponents of the basic dimensions on both sides of the
equsation, we get

Lyt e w2sm i —e

M : 1= -—b

T =2 =c

14



This gives b = —1, ¢ = —2; and the final equation is
W = kot

You will recognize this when k = 3.

Later you will ses how the Anarox Slide Rule can belp you solve

the above problems with ease,

15

CHAPTER III
APPLICATIONS

8. Dimensional checking

Dimensional checking of equations is used to detect errors such as
missing factors, incorrect powers of terms, ete. Examples 1 and 2
illustrate dimensional checking.

Example 1.

Check the expression
usl AL sin
Axr?

AB =

giving & B field, AB, due to an elemental length of conductor, A¢, in
terms of current / and the geometry of the problem. The left hand
gide is magnetic flux density, The sin 6 and the 4x are numerics
(dimensionless) and A¢/r® is equivalent to one over length. On the

ANALoN Slide Rule, 5%]— is seen to be equivalent dimensionally to 5,
thus checking the equation as far as consistent dimensions are con-
cerned.
Example 2.

Refer to the first example on page 1 in the Intreduction.

resistance X charge
inductance

= current? Symbolically, is

RQ :
el

Is it true that

To check this equation,

push the hairline to & on the V scale,
draw L on the U scale under the hairline,
push the hairline to Q on the U scale,
under the hairline read [ on the V scale.

The answer is YES.
16



9. Recalling formulas

In trying to recall speci
pecific formulas, the physi 1
' : : ysical quan:
zx:; otl’ ten remembered, but the specifie way in w:ich ;ﬁ“:lﬁm\'dve_d
f clear, The AS"\LON Rule is an aid to rememberin e{h % !B
orm of formulas. Examples 3 and 4 illustrate the procgdur: i

Example 3.

Is the repulsive fc
orce between two electric ch >
rated by a distance r given by > chate ool g

P 2102
dxer
Set the left index to Q on the V* seale
push the hsirline to & on the U—? scalr;
draw £ on the U scale under the hairline
at the left index read Force, P, on the V ’scale

or F = 213 ,
Axear®

Iherefore the formula with r* is the correct one

Example 4.

‘ Ir_x Frying tq recall the formula for the capacitance (¢ of a conductin
sphere of radius r, you recall that C depends upon & and r, but 5
do not recall the exact form. Is it ' s

- & y _ &T

4 AT

The Avavoxn Slide Rule shows that e has the dimensions of capaci-

tance, therefore ' = ?I.
S

10. Deriving formulas

It was shown in Chapter Il that dimensional analysis is & powerful
tool f9r deriving possible formulas. Since the AnavroN Rule contains
the dimensional information of the physical quantities, it may be
employed to do the dimensional analysis. Examples 5 a.né 6 illustrate
this procedure.

17

Example 5.

We wish to derive a possible formuls for the period of oscillation
of a simple pendulum (see Chapter 11, Section 7). We know (or we
assume) that ¢ depends upon the length and the mass of the pendulum
and the acceleration of gravity, of some form

t = kigm’.

We must determine values of a, b and ¢ such that the right hand side
of the equation has the dimensions of time. The Axavox Slide Rule
shows that ¢/g has the dimension of 77 on the V* scale, and g has
the dimension of v?, neither of which contain & mass term. The v?
is not useful as we do not have an additional length term. Since mass
cannot be included, we conclude that ¢ = 0, and since {/g is T?, the

s
el
N g

result is

Example 6.

What is the formula for the kinetic energy of a moving particle of
mass m and velocity v? This one is very easy. Assuming a solution
of the form

W = km%®,

The Axaron Slide Rule shows

only two exponents are to be found.
v gives W,

that mv is momentum, P., and that multiplying p~ by
work or energy, and

W o= kmii.

No other combination of m and v will dimensionally yield energy.

11. Performing numerical calculations

The A, B, C, and D scales of your Axavox Slide Rule may be used
for multiplication, division, proportion, squares, and square roots. If
you are not familiar with numerical calculations with a slide rule,
Tefer to one of the many manuals on the subject, such as the K&E
Deci-Lon® Manual No. 68 2069.

18



12. Relating the numerical and dimensional scales

The numerical seales used in conjunction with the dimensional scales
allow you to consider quantities and combination of quantities not
marked on the ANaLoN Rule, and to work with combinations of quan-
tities which do not represent a particular physical quantity, Remem-
ber that the physical quantities appear on the rule as symbols, but
are in fact locations of specific numbers corresponding to the particu-
lar physical quantity.

A combination of quantities may fall between symbols on the rule,
You recall this happened in Example 1 on page 16. The following
example illustrates the numerical and dimensional scale interrelations.

Example 7.

The resistance of & uniform conducting wire of length L, cross
section area A, and conductivity ¢ is given by
L

L= —

oA’
If we solve this expression for o, we get
s
RA®
This has the dimensions of (J2£)~). We see on the ANarox Slide Rule
that (¢! falls near the quantity a« on the V scale, at about 762.
This number now represents ¢, conductivity, and the symbol may be
added to the rule, or the number may be recorded in your manusl in
Table I. If the number near 762 appears in future problems, you
might expect it may be o, and a detailed investigation of the problem
will yield the answer.
You must be ecareful! If the number 755 occurs in & dimensional
investigation, since it falls between « and ¢, you must refer to the
physics of the problem to determine the correct quantity.

A Word of Caution.

You must not let the Axarox Slide Rule do your thinking in &
physical problem. A basic understanding of physics is necessary in
the solution of a problem. Your Axavox Slide Rule is an aid. It
saves you work to free your time, and it indicates possibilities, which
you may follow through.

19

CHAPTER 1V
PRACTICE PROBLEMS

13. Solving problems

The following group of problems are for practice in becoming familiar
with the operation of the Axavon, and to further illustrate the type
of problern for which the Axavoxn is applicable. The problems are
relatively simple o that you may easily verify the sgolutions using
conventional dimensional analysis techniques.

Work the problems using the Axarox Slide Rule alone, and then
compare the ease of solution with that of the conventional methods.
The solutions to the problems are listed at the end of the Chapter.

For additional practice, select relations from a physics or engineer-
ing book. You will be pleasantly surprised st the consistency of the
ANavLoN Rule.

As you work these and other problems, keep the following points
in mind:

A. When using the Axarox Slide Rule, as in regular dimensional

analysis, an algebraic sign (4- or —) is ignored.

B. Quantitatively, 6 feet + 4 feet = 10 feet, but dimensionally

length + length = length. The number of terms in an equation 18

unimportant dimensionally as long as they are consistent.

. alh T P
C. Numerical quantities such as 5, =, cos & log 7.5, ete. are not
considered.

D. The symbols for the physical quantities are not all standard.
In addition, in & given problem several symbols may be employed
for the same type of physical quantity. For example, length ¢,
radius r, distance z, wavelength X, ete. are all length. With a little
practice you will easily find the correct symbol on the ANaLon Rule.

E. In such functions as e*, sin 8, cosh ¢, etc., the quantities z, 8, ¢
must be dimensionless. For example, in e*!, « must have the dimen-
gion of 1/7 such that «f is dimensionless.
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F. Dimensionally, the interpretations of derivatives and integrals
are very simple.
The n'®* derivative of a quantity y with respect to x is dimen-
sionally y/z* For example
d?., 2wl
%1(0 is (7]
The integral of y with respect to z is dimensionally yr. For
example

dimensionally.

Ji()dt 18 [JT] dimensionally.

14. Exorcisas

Solve the following problems. Use your Anacon Rule first,

- . % ,F -
1. What is the physical meaning of the expression = where F is
the tension in a stretched wire of mass per unit length u?

Find the correct expression for the inductance of a solenoid of
N turns, length ¢, cross section ares A, and permeability p.

=

. NiuAds o Nud
(a) 1‘ o 77 ' (C) L / ’

1\”;.1( < .‘\"pA
) L ==, (d) L o

3. The expression for the period of oscillation of a compound pen-

dulum 18
x
—5 ,__
T 2x oA’

where m is the mass, g the acceleration of gravity, and A the dxs-
tance from the center of gravity to the point of suspension.
Determine the unknown quantity =.

4. What is the interpretation of

1
(a) JIic'

Can you relate them?

®) o=
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5. What is the relationship between the energy W of a photon, and
its frequency 7

8. Which of the following expressions are equivalent to frequency?

3 It 1

@ler @ g+ - L
(.| + C) + (—3

) R/L, ) T FRycao:

(C) C'/Rv

7. Find the incorrect term in the following expression involving
translational and rotational kinetic energy, where [ represents
the moment of inertia.

W o T + w?

2 2m

8. The pericd of oscillation 7', of a simple pendulum is a function
of its length L (among other things). Two different periods
T, & T; corresponding to the two length L, & L, are measured,
and we would expect a relationship of the form

Ty _ (L
T, L)~
Can you find the value of a employing the Axaron Rule?

9. A student finds in his class notes that power loss in an iron cored
choke conducting an alternating current is given by the expression

P = =BHV].
In his haste in recording the formula, he neglected to identify the

quantities involved. He has forgotten whether V is voltage or
volume. Which is it?

10. Find the value of n such that the combination

DpV=
M

is & dimensionless group (& dimensionless combination of quanti-
ties related to a specific area). This group is called Reynolds
number, employed in fluid dynamics.
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14.

D — Diameter of cross section of fluid channel
p— Fluid density

V — Average fluid veloeity

u— Fluid viscosity

Note that the symbol s does not appear on the Anaron. It
would appear &t the value 2282 on the D scale, and has the dimen-

M

sions of Mas I r T d
sions o ass per Length per Time or LTy

. Find a possible expression for electrical power P in terms of

voltage applied V, resistance K, inductance L, and capacitance (.

Perform a dimensional check on the differential expression

N
-

dis NI
AL T
Perform a dimensional check on the differential equation
a* dt 1 dv
L Fﬁ 1= R z{—‘ -+ 'C', — a.
Perform a dimensional check on the integral forms of Maxwell's
equations (the basic equations of electromagnetic theory).

(a) Gauss’ law (Electric): f e 2y O
(b) Gauss law (Magnetic): f B -ds =0
(c) Ampere’s law: f?l cdl =i+ Fi}-b‘ . ds,

() Faraday's law of induction: fz‘«:‘ - dl = —3‘% .

where E — Electric field intensity
B — Magnetic induction
H — Magnetic field intensity
s —surface (over a closed surface)
{— length (along a closed curve)
D — Eleectric displacement
& — Magnetic flux
t— Time
q — Electric charge
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15.
1.

2,
3.

10.

11.

12,

13.

14,

Solutions

Velocity (of a transverse wave in the wire)
c
I.. (moment of inertia)
(a) for w (frequency)
(&) v (velocity)
v = f¢, where £ must now be wavelength.
W = L.f. Here, you will recognize¢ this particular angular mo-
mentum as Plank's constant, A,
a, b, &d.

. 13? [ w?
The expression 5— should be —-.
~m &
No. Both terms are dimensionless ratios.
V' is volume.

n = 1

- V2RG

.

P

The expression is dimensionully correct,
(1/7]) = [V/L], and [R/L] = [T]
such that the exponent is dimensionless.
The expression is dimensionally correet.
ELI/T*) = [R1/T]) = [I/C] = [V/T).
(a) [D] = [Q]. The expression is dimensionally correct.,

(b) Zero is dimensionally indeterminate, hence no dimensional
check is possible.
(¢) [H¢] = [I] = [D&/T]. The expression is dimensionally
correct.
(d) [E¢] = [¢/T]. The expression is dimensionally correct.
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APPENDIX A

UNIT CONVERSIONS

Converting a physical quantity from one unit to another, such as
converting power from watts to horsepower, or pressure from pounds
per square inch to newtons per square meter, can be accomplished
with the use of tables of unit equivalents such as Table II. The nead
for very extensive tables containing sll possible equivslent unit conver-
sions can be avoided by reducing the quantities of interest to & set of
basic dimensions and converting the units of these basic dimensions.
Any set of basic dimensions may be choseén, such as Length-Mass-Time-
Charge, Length-Mass-Time-Current, Length-Force-Time-Charge, ete.;
however, the choice will normally be dictated by the quantities to
be converted.

As an example, it is required to convert a mass density of size p;
in gm/cm? to its equivalent value in Ib/in.®. The quantity g is in
terms of basic dimensions Mass and Length, thus the needed relation-
ships in the two systems are for Mass* (pounds & grams) and Length
(inches & centimeters). From Table Ila,

1 kgm = 2.205 1b (or 1 gm = 2.205 X 1072 1b);

thus wherever the unit “grams’’ appears, it is to be replaced by it{s
equivalent in pounds, or multiplied by the number of pounds in one
gram (Ib/gm). That is,

gm(lb/gm) = b, or gm(2.205 X 107%) = Ib,

which is stated as “number of grams times 2.205 X 107 equals
number of pounds.”

L Al in the Foot/Pousd-masy/Second (( [bm s) syute nj
L e The pound (1) I 8 o O oree /Secund Ui IM 3) syatem. In|tha fatter, faten T & baie
dimenyicn.
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Similarly, since
1 meter = 10%¢m = 3.28 {t. = 39.4 in.,
1 em = .394 in., thus (in./em) = .304,
and cm(in./em) = in., thus cm?®(in./cm)?® = in.?,
or em?(.394)* = ¢m? (L0611) = in.>.

The density conversion is now

gm(lb/gm) PN Tl (R R | .
em?(in./em)? 0611 S o OiPe h/ini=.
26



APPENDIX B
DIMENSIONAL SYSTEM CONVERSIONS

Conversions among dimensional systems are generally performed
through the use of tables such as Table IIb, but it is interesting to
look at an example in some detail. The term “dimensional system
conversion'' might tend to be misleading, since systems are defined
by themselves and are not dependent upon other systems. They are,
however, related in terms of the defining equations of the systems.

Consider the force between two electric charges in the SI (MKS)
and the esu systems.

SI System esu System
00 p - Q0
dxe, e’ r?
where the quantities are:
F in newtons F in dynes

Q in statcoulombs
r in centimeters

@ in coulombs
r in meters

: amp sec
¢ in farads/meter, or Voltmeter

and ¢ is dimensionless in both systems.

To determine the relationship between electric charge in the SI
systern and electric charge in the esu system, consider a force of one
newton at a separation of one meter in free space (e = 1). Recall
that 1 newton = 10* dvnes and 1 meter = 107 centimeters.

SI System esu System
! 108 d - el
1 newton = m yne (10* cm)*

27

or
Q = Vdxe coulomb Q = V10 statecoulomb
or
-\/_- 1 10.
Q = 2vil0i % A0 :);( 105 coulomb Q = 10 statcoulomb.
Thus, Qe [2.998 X 10*] = Qrew
or

1 coulomb = 2.998 X 10* statcoulomb (see¢ Table 11bh).

The reader is referred to any of the many text books on electro-
magnetic theory or dimensional systems for more complete digcussions
of the esu and emu systems.
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Table |

BASIC DIMENSIONAL EQUIVALENTS

Blank spaces at the bottom of this table are for the addition of
other frequently used quantities.

Table | BASIC DIMENSIONAL EQUIVALENTS (Continued)
Basic DiMENSIONS
Sya- QUANTITY
BOL Length | Mass | Time | Charge
Q Charge Q
R Resistance, Reactance I M ¢ i I Y1
T Time, Period T
v Potential (Voltage) (4 M ™ | Q@
v Velocity 4 Y bl
W | Work, Energy, Torque & M s
« Angular Acceleration { s
@ Electric Permitivity Ines: M| T3 Q?
B Magunetic Permeability { M Q?
) Magnetic Flux e M r=x: | 0 Q@
P Density -t M
w Frequency, Angular Velocity Tt

=) el Basic DpgeENSIONS

BOL Length | Mass | Time| Charge

a Acceleration 4 f lo

B Magnetic Induction M ™| Q*

(Magnetic Flux Density)
C Capacitance o M=) T2 Q*
D Electric Displacement Y Q
(Electric Flux Density)

E Electric Field ¢ M i B 4 2

F Force 14 M 3

H Magnetic Intensity [ T 0

I.. | Moment of Inertia (] M

I Electric Current ' Q

k Spatial Frequency &

L Inductance e M Q*

L. | Angular Momentum, Action (e M =

14 Length 4

(43 Area e

o Volume a

M | Mass M

P | Power a M It

P,. | Linear Momentum 4 M Tk
(Cont.)
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Table IIb ELECTROMAGNETIC UNIT RELATIONS

Table lla MECHANICAL UNIT RELATIONS
MKS cgs flbm s fibf s
Quantity System Syslem System System
Length 1 meter 10% 3.281 3.281
cm ft ft
Mass 1 kilogram | 10* 2.205 70.94
gm lbm glug
Forece ] newton 10* 7.233 0.2248
dyne poundal 1bf
Work 1 joule 107 23.53 v 0.7376
(Energy) erg poundal ft 1bf
Power 1 watt 107 23.53 ft 1.341Q10)
erg/sec | poundsal/sec | horse power
Density 1 kg/m? 10—* 62.43(10)—* 2.009
gm/em? | lbm/ft? slug/ft?
31

mksa (Abso- cgs esu cgs emu Gaussian
Quantity | lute) System System System System
Permit- 8.855(10)— | 1 1.1126(10)~% 1
tivity of | farad/m [Dimen- [Dimen-
emply sionless ] sionless’]
space (&)
Permes- 1,2566(10)~*| 1.1126(10)~*|1 1
bility of | henry/m [Dimen- [Dimen-
empty sionless ) sionless )
Bpace (o)
Charge 1 coulomb | 2.908(10)* 0.1 2.008(10)*
(Q) statcoulomb |abeoulomb | statcoulomb
Potential | 1 volt 3.336(10)—* |[(10)® 3.336(10)?
(V) statvolt abvolt statvolt
Current 1 ampere 2.998(10)* 0.1 2.998(10)?
(I) statampere |abampere statampere
Resist- 1 ohin 1.1126(10)~2| (10)? 1.1126(10)7*3
ance (/) statohm abohm statohm
Electric 1 3.767(10)¢ (10)—* 3.767(10)¢
displace- | coulomb/m? | stat- abcou- stat-
ment (D) coulomb/cm? | lemb/em?® coulomb/cm?3
Capaci- 1 farad 8.088(10)* (10)—* §.988(10)"
tance (C) em abfarad cm
Magnetic | 1 ampere 3.767(10)* 1.257(10)~2 |1.257(10)7?
fiel turn/m Statoersted |oersted oersted
strength
(H)
Magnetic | 1 weber/m?* | 3.336(10)~7 | (10)* (10)*
flux den- stat- maxwell /em?| gauss
sity (B) maxwell/cm?
Induct- 1 henry 1.1126(10)—'2| (10)° (10)*
ance (L) stathenry cm cm
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